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Why Give a Talk to Mathematicians on DL?

� Deep learning is dominating machine learning (image
classification, object detection, text parsing, etc).

� Industry is keeping pace with/beating academia in terms of
breakthroughs and adoption. We need mathematicians to
provide rigor to modern strategies.
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Figure: Per-month publication totals of papers on arXiv. Topology
(orange) provided as a reference.
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Gatys et al. (2015), Taigman et al. (2014)
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Courtsey Nvidia,Krause et al. (2016)
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This talk will. . .

� Provide a comprehensive introduction to Deep Learning
� Cover most of the modern ideas and trends
� Illuminate the issues underpinning popular strategies
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Traditional Supervised Image Classification

Training
1. Input Labeled Data

↓
2. Extract Features

↓
3. Train Classifier
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Training

http://www.cs.trincoll.edu
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Feature Extraction

� Popular features: scale-invariant feature transforms (SIFT),
speeded up robust features (SURF), sparse
reconstruction-based classification (SRC) coefficients.

� They are hand crafted from analytical work trying to
decipher invariant (translation, rotational, scale, etc.) and
discriminatory image characteristics.

Lowe (1999)
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� Popular features: scale-invariant feature transforms (SIFT),
speeded up robust features (SURF), sparse
reconstruction-based classification (SRC) coefficients.

� They are hand crafted from analytical work trying to
decipher invariant (translation, rotational, scale, etc.) and
discriminatory image characteristics.

� Why not have the computer do it?

Lowe (1999)
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Single Hidden Layer Network

� Input x ∈ Rd , NN output a(2)

a(2) = f2(f1(x))
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Single Hidden Layer Network

� Input x ∈ Rd , NN output a(2)

a(2) = W2 σ(W1x + b1)︸ ︷︷ ︸
1st Layer (hidden)

+b2
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Nielsen (2015)
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Universal Approximation Theorem

� Universal Approximation Theorem: given enough hidden
layers, weight depth, and σ of a certain set of nonlinear
functions, then a NN with linear output can represent any
Borel measurable function mapping finite dimensional space
to another.

� Nice, but representation6=prediction.

Hornik et al. (1989),Leshno et al. (1993)
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More Parameters, More Descriptiveness

Li/Kaparthy/Johnson, Stanford CS231
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Activation Functions

� Feature spaces require nonlinear activation functions.
� There is no one “best” choice for an activation function, to

say nothing of how many layers have one specific activation
function.

� Since 2009, the go-to: Rectified Linear Units (ReLU)

σ(z) = a such that ai = max(0, zi)

John.McKay@psu.edu Skeptical Math Intro to DL 12 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Activation Functions

imiloainf.wordpress.com (her typo)
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Output Layer

� Nevermind, sigmoids are okay.
� For binary problem, sigmoid acts as a probability
� For multinomial, popular to use softmax

softmax(zi) =
exp(zi)∑
j exp(zj)

� softmax ≈ argmax function (one hot vector output)
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Convolutional Neural Networks

� Convolutions with filters are a way to do weight sharing and
exploit sparse interactions.

� Fewer weights? Less to train/save.
� Modern CNNs are the most accurate algorithms humans

have ever devised (by a bit).

LeCun et al. (1998)
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Convolutional Neural Network
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Li/Kaparthy/Johnson, Stanford CS231
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Recurrent Neural Networks

source
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Regularization

Li/Kaparthy/Johnson, Stanford CS231,Gal and Ghahramani (2015)

John.McKay@psu.edu Skeptical Math Intro to DL 19 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Contents

1 Intro

2 Neural Network Design
Convolutional Neural Networks

3 Training Neural Networks
Backpropagation
Stochastic Gradient Descent
Optimization Issues

4 Transfer Learning
Pretraining
Fine Tuning

John.McKay@psu.edu Skeptical Math Intro to DL 19 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

How to train Neural Networks?

� Suppose we are given a set x1, . . . ,xn with known labels
y(xi) = yi . Training entails tuning parameters to minimize
the error between y and the model’s outputs for each xi .

� Cost functions represent a surrogate for classification error.
We indirectly improve classification performance.

� In minimizing the cost function, gradient descent methods
have become the go-to strategy. We will later discuss issues
with this.

� What is the gradient of a NN w.r.t. its parameters?

John.McKay@psu.edu Skeptical Math Intro to DL 20 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Contents

1 Intro

2 Neural Network Design
Convolutional Neural Networks

3 Training Neural Networks
Backpropagation
Stochastic Gradient Descent
Optimization Issues

4 Transfer Learning
Pretraining
Fine Tuning

John.McKay@psu.edu Skeptical Math Intro to DL 20 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Backpropagation

� Calculating the gradient was significant challenge until 1986
when Rumelhart et al proposed backpropagation.

� What was the problem before them?
� Nested nonlinear activation functions and nontrivial cost

functions are messy and require a lot of work for slight tweaks.
� NNs with even a little depth involve several matrix

multiplications. If one were to use a finite difference scheme,
several forward passes through a network gets expensive.

Rumelhart et al. (1986)
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Backpropagation

� As we will show, Backpropagation allows for us to compute
the gradient of a NN at the cost of two forward passes
regardless of the architecture.

� It plays mainly off of implementations of the chain rule.
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Example Network: C cost function, L number of layers, input
training x ∈ Rm (n in total), y(x) desired output

al
j(x) = al

j = σ

(∑
k

w l
jkal−1

k + bl
j

)

Nielsen (2015)
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training x ∈ Rm (n in total), y(x) desired output

al
j(x) = al

j = σ

(∑
k

w l
jkal−1

k + bl
j

)

C has two requirements: it can be written as a function of the
network outputs aL and arranged as a sum of cost functions
for each training sample. Example:

C(aL) =
1

2n

∑
x
||y(x)− aL(x)||22

Nielsen (2015)
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Example Network: C cost function, L number of layers, input
training x ∈ Rm (n in total), y(x) desired output

al
j = σ

(∑
k

w l
jkal−1

k + bl
j︸ ︷︷ ︸

z l

)

Nielsen (2015)
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Example Network: C cost function, L number of layers, input
training x ∈ Rm (n in total), y(x) desired output

al = σ
(

W lal−1 + bl
)
= σ(z l)

Goal: find ∂C/∂w l
jk , ∂C/∂bl

j

Nielsen (2015)
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al = σ
(

W lal−1 + bl
)
= σ(z l)

Let δl
j = ∂C/∂z l

j
- Error in Output Layer

δL
j =

∂C
∂aL

j

∂aL
j

∂zL
j
=
∂C
∂aL

j
σ′(zL

j ) (1)

-
δl = ((W l+1)Tδl+1)� σ′(z l) (2)

-
∂C
∂bl

j
= δl

j (3)

-
∂C
∂w l

jk
= al−1

k δl
j (4)

John.McKay@psu.edu Skeptical Math Intro to DL 24 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

al = σ
(

W lal−1 + bl
)
= σ(z l)

Let δl
j = ∂C/∂z l

j
-

δL
j =

∂C
∂aL

j

∂aL
j

∂zL
j
=
∂C
∂aL

j
σ′(zL

j ) (1)

- δl in terms of δl+1

δl = ((W l+1)Tδl+1)� σ′(z l) (2)

-
∂C
∂bl

j
= δl

j (3)

-
∂C
∂w l

jk
= al−1

k δl
j (4)

John.McKay@psu.edu Skeptical Math Intro to DL 24 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

al = σ
(

W lal−1 + bl
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=
∂C
∂aL

j
σ′(zL

j ) (1)

-
δl = ((W l+1)Tδl+1)� σ′(z l) (2)

- Partial w.r.t. bias
∂C
∂bl

j
= δl

j (3)

-
∂C
∂w l

jk
= al−1

k δl
j (4)
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Backpropagation Algorithm

1 Input x and solve for a(1)

2 Feedforward through the network, i.e. for l = 2, . . . ,L find

z l = W lal−1 + bl , al = σ(z l)

3 Find δL = ∇aLC � σ(zL)
4 Backpropagate error by, for l = L− 1,L− 2, . . . ,2,

calculating
δl = ((W l+1)Tδl+1)� σ′(z l)

5 Gradients of Cost Function are found as
∂C
∂bl

j
= δl

j ,
∂C
∂w l

jk
= al−1

k δl
j

Nielsen (2015)

John.McKay@psu.edu Skeptical Math Intro to DL 25 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Backpropagation Algorithm

1 Input x and solve for a(1)

2 Feedforward through the network, i.e. for l = 2, . . . ,L find

z l = W lal−1 + bl , al = σ(z l)

3 Find δL = ∇aLC � σ(zL)
4 Backpropagate error by, for l = L− 1,L− 2, . . . ,2,

calculating
δl = ((W l+1)Tδl+1)� σ′(z l)

5 Gradients of Cost Function are found as
∂C
∂bl

j
= δl

j ,
∂C
∂w l

jk
= al−1

k δl
j

Nielsen (2015)

John.McKay@psu.edu Skeptical Math Intro to DL 25 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Backpropagation Algorithm

1 Input x and solve for a(1)

2 Feedforward through the network, i.e. for l = 2, . . . ,L find

z l = W lal−1 + bl , al = σ(z l)

3 Find δL = ∇aLC � σ(zL)
4 Backpropagate error by, for l = L− 1,L− 2, . . . ,2,

calculating
δl = ((W l+1)Tδl+1)� σ′(z l)

5 Gradients of Cost Function are found as
∂C
∂bl

j
= δl

j ,
∂C
∂w l

jk
= al−1

k δl
j

Nielsen (2015)

John.McKay@psu.edu Skeptical Math Intro to DL 25 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Backpropagation Algorithm

1 Input x and solve for a(1)

2 Feedforward through the network, i.e. for l = 2, . . . ,L find

z l = W lal−1 + bl , al = σ(z l)

3 Find δL = ∇aLC � σ(zL)
4 Backpropagate error by, for l = L− 1,L− 2, . . . ,2,

calculating
δl = ((W l+1)Tδl+1)� σ′(z l)

5 Gradients of Cost Function are found as
∂C
∂bl

j
= δl

j ,
∂C
∂w l

jk
= al−1

k δl
j

Nielsen (2015)

John.McKay@psu.edu Skeptical Math Intro to DL 25 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Backpropagation Algorithm

1 Input x and solve for a(1)

2 Feedforward through the network, i.e. for l = 2, . . . ,L find

z l = W lal−1 + bl , al = σ(z l)

3 Find δL = ∇aLC � σ(zL)
4 Backpropagate error by, for l = L− 1,L− 2, . . . ,2,

calculating
δl = ((W l+1)Tδl+1)� σ′(z l)

5 Gradients of Cost Function are found as
∂C
∂bl

j
= δl

j ,
∂C
∂w l

jk
= al−1

k δl
j

Nielsen (2015)

John.McKay@psu.edu Skeptical Math Intro to DL 25 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Learned Filters

Courtesy Yann LeCun
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Gradient Descent

� Backpropagation→ gradient
� (Batch) gradient descent:

W l = W l − αW
∂C
∂W l

b = bl − αb
∂C
∂bl

� Issue: C is the sum of costs associated with each training
sample.

� Many problems use millions of training samples. . .
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Stochastic Gradient Descent

� Randomly choose m < n training samples x1, . . . ,xm

C(m) =
m∑

i=1

Cxi

� Update step:

W l
k+1 = W l

k −
nαW

m

m∑
i=1

∂Cxi

∂W l
k

bk+1 = bl − nαb

m

m∑
i=1

∂Cxi

∂bl
k
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Stochastic Gradient Descent

� Randomly choose m < n training samples x1, . . . ,xm

C(m) =
m∑

i=1

Cxi

W l
k+1 = W l

k − αW
n
m

m∑
i=1

∂Cxi

∂W l
k︸ ︷︷ ︸

gW

E[gW ]= ∇W C
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Stochastic Gradient

� Randomly choose m < n training samples x1, . . . ,xm

C(m) =
m∑

i=1

Cxi

W l
k+1 = W l

k − αW
n
m

m∑
i=1

∂Cxi

∂W l
k

� Learning rate αW is typically fixed and “small” (but not “too
small”).
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Stochastic Gradient “Descent”

� Randomly choose m < n training samples x1, . . . ,xm

C(m) =
m∑

i=1

Cxi

W l
k+1 = W l

k − αW
n
m

m∑
i=1

∂Cxi

∂W l
k
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Stochastic Gradient Descent

Figure: GD on left, SGD on right

Ng, Standford Machine Learning (Fall 2011)
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Stochastic Gradient Descent

Figure: GD on left, SGD on right

Still acceptable - we just want “close enough”

Ng, Standford Machine Learning (Fall 2011)
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Summarize Training
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Quick Note on C

� Least squares is useful for examples, but usually not
suitable for practice (slow with sigmoid output).

� Cross-entropy

C =
1
n

∑
x

yT ln(aL(x)) + (1− y)T ln(1− aL(x))

� Chosen for “nice” attributes, but no idea of resulting
topology, which influences everything.
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Optimization Issues

� Training for NNs remains one of the least analytically sound
aspects.

� What does the cost function look like?
� Where are its local minima (if there are any)?
� How will SGD jump around?
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Local Minima Problem

Sontag and Sussmann (1989),Brady et al. (1989),Gori and Tesi (1992)
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Saddle Points

� Suppose H = ∇2C and λi its eigenvalues.
� P(λi > 0) = 1

2=⇒P(λ1 > 0, . . . , λK > 0) = (1
2)

K

� (1
2)

K → 0 as K →∞, meaning the probability that a critical
point is a saddle point.

Dauphin et al. (2014)
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Sontag and Sussmann (1989),Brady et al. (1989),Gori and Tesi (1992)
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No Minima Problem
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In Practice. . .

� Even in cases where local minimum is not found, results can
be state-of-the-art; just want SGD to find “very small value.”

� Initialization of weights is a major area of research to try to
place model in “good” area to find local minima (more on
this later).

� Structural elements have adapted to (experimentally) fix
these issues (ReLU, cross-entropy cost, convolutional
layers, etc.).

Goodfellow et al. (2016)
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Unstable Gradient vs. Architecture

Layers (Parameters∗) Mutli-Class Error Top-5 Error
11 (133) 29.6 10.4
13 (133) 28.7 9.9
16 (134) 28.1 9.4
16 (138) 27.3 8.8
19 (144) 25.5 8.0

∗ Number in millions

Simonyan and Zisserman (2014)
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Unstable Gradient

� Consider simplified model

� Typical initialization: wi ∼ N (0,1), bi = 1

Nielsen (2015)
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Vanishing Gradient

� First layers learn slower than later ones

Nielsen (2015)
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Unstable Gradients for FFN

Nielsen (2015)
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Overcoming Unstable Gradients

� Initialization (again)
1 Random Walk Initialization1

W̃ ` = ωW ` where ωReLU = (
√

2) exp
(

1.2
max(N`,6)− 2.4

)
2 Orthonormal Initialization2

3 Unit Variance Initilization3,4

Sussillo and Abbott (2014)1,Saxe et al. (2013)2,He et al. (2015)3,Mishkin and Matas (2015)4

John.McKay@psu.edu Skeptical Math Intro to DL 42 / 55



Intro Neural Network Design Training Neural Networks Transfer Learning References

Overcoming Unstable Gradients

� Student-teacher model
� Drop in layers as you go
� Change the cost function and/or activiation functions?

Romero et al. (2014)
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Transfer Learning & Optimization Problems

� Transfer learning: taking a model primed for task X and
applying to unrelated problem Y . For example, taking a
CNN designed to discern amongst vehicles and applying it
to classifying different animals without manipulating
parameters.

� Transfer learning and its predecessor pretraining are
unintentional solutions to the initialization problems.
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Pretraining

� Pretraining revived deep neural networks from obscurity.
� Without convolutions or recursion, deep full connected

networks could be trained and avoid local minima problems.
� Unsupervised pretraining has mostly been abandoned, but it

inspired much of the modern work in transfer learning.

Bengio et al. (2007)
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Unsupervised Pretraining

Let f be the identity function, X input data matrix (1 row per
example), K number of iterations
for k ∈ {1, . . . ,K}

f (k) = L(X )

f = f (k) ◦ f

X = f (k)(X )

The above is done for each layer. The input is the previous
layer’s output.

Goodfellow et al. (2016)
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Unsupervised Pretraining

Unsupervised pretraining is thought to work because:
1 A model is sensitive to its initializations.
2 Learning the input distribution is useful.

Goodfellow et al. (2016)
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Unsupervised Pretraining

Unsupervised pretraining is thought to work because:
1 A model is sensitive to its initializations.

� This is the least mathematically understood part of
pretraining.

� It may start the model at local minima otherwise inaccessible
based on the shape of the cost function.

� How much of the initialization survives training?

2 Learning the input distribution is useful.

Goodfellow et al. (2016)
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Unsupervised Pretraining

Unsupervised pretraining is thought to work because:
1 A model is sensitive to its initializations.
2 Learning the input distribution is useful.

� Suppose car/motorcycle model; will pretraining spot wheels?
Will its representation of a wheel be helpful?

� There is no coherent theory as to if/how/why/when
unsupervised features help with NN training.

Goodfellow et al. (2016)
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Supervised Pretraining

x → σ(W (1)x + b(1))→ y(x)

Bengio et al. (2007)
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Supervised Pretraining

x → σ(W (1)x + b(1))︸ ︷︷ ︸
x(1)

→ y(x)

x (1) → σ(W (2)x (1) + b(2))→ y(x)

Bengio et al. (2007)
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Supervised Pretraining

x → σ(W (1)x + b(1))︸ ︷︷ ︸
x(1)

→ y(x)

x (1) → σ(W (2)x (1) + b(2))→ y(x)
...

x → σ(W (1)x + b(1))→ σ(W (2)a(1) + b(2))→ · · · → y(x)

Bengio et al. (2007)
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Oquab et al. (2014)
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Thank You
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