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The Modern Convolutional Neural Network

• Convolutional neural networks (CNNs) are the
state-of-the-art in image classification (and text
classification and image super-resolution and object
detection and. . . )

• In computer vision circles, seemingly every problem
has seen a significant jump in CNN usage - to good
e�ect.

• Much of that success has been had by researchers
willing to bypass knownmathematical warnings.
This has largely played out well for CS/EE types.

• This talk is going to focus on a problem inherent to
CNNs that relates to a lack of mathematical rigor.
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High Level Understanding of Machine Learning

• ML is a field of algorithm development wherein data is used to tune parameters/weights towards some task (like
classification). We are going to discuss supervisedML, meaning the data is labeled.
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Key to Machine Learning: Extracted Features

• Traditionally, features are extracted from data
samples to focus the training/testing of the machine
learning model.

MIT
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Key to Machine Learning: Extracted Features

• Traditionally, features are extracted from data
samples to focus the training/testing of the machine
learning model.

• How these features are designed and the attributes
they capture is of great interest; the more
discriminatory they are, the easier a classifier will
train and the better the algorithmwill do.

Wikipedia
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Neural Networks

• Neural Networks are nested a�ine transformations.
• Suppose we have a network with L = 2 layers and
an (vectorized image) input x :

a (2) =

Second (Output) Layer︷ ︸︸ ︷
f2( f1(x)︸︷︷︸

First (Hidden) Layer

)

Input 1st Layer 2nd Layer
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Neural Networks

• Neural Networks are nested a�ine transformations.
• Suppose we have a network with L = 2 layers and
an (vectorized image) input x :

a (2) = W2σ(W1x + b1) + b2
• W1 andW2 are theweights and b1 and b2 are biases.
• σ is activation function, one of the components that
makes the network nonlinear. In the old days, σ was
typically a sigmoid to mimic neurons which is
di�icult to train. The community now prefers ReLU
activations:

σ(x) = x if x > 0 and σ(x) = 0 otherwise

• We use z as:
z1 = σ(a (1))

Input 1st Layer 2nd Layer
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Convolutional Neural Network

• Traditional neural networks work well
for text analysis and time series analysis,
but for high dimensional problems
(image processing) matrices make
training cumbersome/impossible.

• Modern networks typical share weights
to exploit locality. In other words, we
convolve filters across activation maps:

a (n+1) = wn+1 ∗ zn + bn+1

Stanford cs231
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Convolutional Neural Network

Raghav Prabhu

• The output activation function is typically a so�max:

zj = σ(a)j =
exp(aj )∑K
k=1 exp(ak )

for j = 1, . . . ,K

for a classification problemwith K classes. This approximates a one-hot vector.
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Training

• NNs require a cost function to “optimize” the weights and biases to map a sample x to a correct label y(x).
Typically. . .

for image classification, the cross-entropy function is a common choice:

CCE = −
1
K

K∑
k=1

y(x)k log(zLk ) + (1− y(x)k ) log(1− zLk )

for image processing (super-resolution, denoising, etc), the mean squared error is popular:

COLS =
1
2n

∑
x

||y(x)− zL (x)||22

• Even with filters (and pooling) we end up with millions of parameters. How do we train these images?
Backpropagation and Stochastic Gradient Descent.
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Training

• The tl;dr on backpropagation: we use a forward pass through the network with a training sample and then
backpropagate error through each layer using the chain rule many, many times to get the gradient.

• With these gradients, we could use a gradient descent scheme to train the network but if we have millions of
training samples, this can be prohibitively slow. Thus, we use stochastic gradient descent on batches of samples.

Learn OpenCV
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A Trained Neural Network

• When this works (which is more o�en than not) we end up with a cascade of finer and finer edge filters.

Yann LeCunn

Deep Neural NetworksIy 10/29Iy



Deep Learning & Its Features

• The strength of deep learning/neural networks is the
auto-feature-generation. Circumventing human bias
allows a direct path to a compelling solution.

He et al CVPR 2015
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What Can Go Wrong?

• While NNs o�er unprecedented performance, we have to make some questionable steps.
• Among the issues:

What are these learned features looking for?
Does the stochastic gradient descent ever converge to a minimum? (non-convex, NP hard problem1)
What does the cost manifold look like?
How robust are they to noise?
Do they overfit?
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The Rest of this Talk. . .

• For the rest of this talk, we are going to discuss ways in which deep learning/neural networks can fooled.
• Key context: deep learning is the state-of-the-art. It is di�icult to justify using SVMs/random forests/etc. for
most problems when a neural network can significantly improve performance.

• Note as well that these other machine learning strategies can also be fooled - potentially in the exact same way.
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Setting

• Assume for the following that we have a well-trained neural network for a classification task.
• It is easiest to illustrate the following ideas with images, but they apply for any domain.
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What Is the Network Looking At?

• We did not constrain the network to filters that we can understand.
• Research has shown that deformations of objects into gibberish can still earn high scores from a neural network.
The images below all have> 99% confidence from a well-trainedmodel.

Nguyen et al CVPR 2015
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Pernicious Gibberish

Nguyen et al CVPR 2015
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How the Gibberish Images are Made

Nguyen et al CVPR 2015
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How the Gibberish Images are Made

Nguyen et al CVPR 2015
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How robust is the model to being fooled?

• What if someone wants to actively fool a network? What if we have an adversarial attack?

Goodfellow et al ICLR 2014
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How Attacks Work: General Idea

Papernot et al 2016 arXiv GoodFellow et al ACMMagazine 2018
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How Attacks Work: White Box

• Suppose we have a learnedmodel F (X ) |θ) for a set of parameters θ. For awhite box attack, we know θ and
the architecture of F and want to design an adversaryX = X + δX that fools the network with a high degree of
confidence. Since we also want the perturbation creating the adversary to be small, we look to solve

argmin
δX

||δX || such that F (X + δX ) = Yk︸︷︷︸
one-hot vector for class k

6= Y`︸︷︷︸
class ` 6= k

• Because of the complexity of a neural network, solving this problem is non-trivial (highly non-linear and
non-convex [25]).
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How Attacks Work: White Box

• Jacobian-based Saliency Map Approach:

Papernot et al ESSP 2016
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How Attacks Work: White Box
• Jacobian-based Saliency Map Approach:

Papernot et al ESSP 2016
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Black Box Attacks
• Black box attacks: the adversary doesn’t knowmodel parameters.
• These attacks are harder to deal with than white box attacks.

Model A

Model B

Model C

Utilize Model Parameters to Get Perturbations

Adversarial Attack FunctionQA (·)
Adversarial Attack FunctionQB (·)
Adversarial Attack FunctionQC (·)

White Box Attack Test QueryX Generate AdversaryQA (X ) classA (QA (X )) 6= classA (X )

Black Box Attack

QueryX
Generate AdversaryQA (X )

classB (QA (X )) 6= classB (X )

classC (QA (X )) 6= classC (X )
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Black Box Attacks

• Suppose we can generate Y = F (X ) for anyX but do not have θ or the original training data.

• Strategy 1: Iterate over synthetic data to train a new network F̂ to mimic the output of F . With F̂ , we can then
cra� adversaries using F̂ but apply them towards F .

• Strategy 2: Take an existing network trained for a similar task and use that as F̂ in the strategy above.

Adversarial AttacksIy 23/29Iy



Black Box Attacks

• Suppose we can generate Y = F (X ) for anyX but do not have θ or the original training data.

• Strategy 1: Iterate over synthetic data to train a new network F̂ to mimic the output of F . With F̂ , we can then
cra� adversaries using F̂ but apply them towards F .

Algorithm 1 Papernot et al 2017 ASIA CCS

Input F , F̂ , S0, λ
1: for n = 0 toN do
2: // Label the substitute training set.
3: D = {(X ,F (X )) : X ∈ Sn}
4: // Train F̂ on D to evaluate parameters θ̂
5: θ̂ = train(F̂ ,D )
6: // Perform Jacobian-based data set augmentation
7: Sn+1 =

{
X + λsign(JF̂ [F (X )]) : X ∈ Sn

}
∪ Sn

8: end for
9: return θF̂

• Strategy 2: Take an existing network trained for a similar task and use that as F̂ in the strategy above.
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Black Box Attacks

• Suppose we can generate Y = F (X ) for anyX but do not have θ or the original training data.

• Strategy 1: Iterate over synthetic data to train a new network F̂ to mimic the output of F . With F̂ , we can then
cra� adversaries using F̂ but apply them towards F .

• Strategy 2: Take an existing network trained for a similar task and use that as F̂ in the strategy above.

Papernot et al ICLR 2018
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Why Do Black Box Attacks Work?

• A key concept of modern NN theory is transfer learning, the ability to share weights among similar tasks.
• Hypothesis: learned human interpret-able image decision manifolds are largely the same.

Oquab et al CVPR 2014
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Why Do Black Box Attacks Work?

• A key concept of modern NN theory is transfer learning, the ability to share weights among similar tasks.
• Hypothesis: learned human interpret-able image decision manifolds are largely the same.

Razavian et al CVPR 2014
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Black Box Attacks Are Especially Pernicous

• Black box attacks work even whenmodels are designed to resist white box attacks.

F (X )

F (X adv)

X X adv

Trained with Smoothing Penalty

F̂ (X )

F̂ (X adv)

X X adv

Other Model

Papernot et al IEEE ESSP 2018
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Protection from White Box Attacks

• We can prevent white box attacks by training with adversarial examples on the model itself.

Goodfellow et al ICLR 2015
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Protection from Black Box Attacks

• Similar to white box, we can use train several models and train using a mixed batch of adversarial images.
• Ensemble adversarial training makes a model more robust to attacks and less useful in transferring attacks.
• Suchmodels do have a lower ceiling in terms of general performance.

Tramèr et al ICLR 2018

What to Do?Iy 27/29Iy



Protection from Black Box Attacks
• Similar to white box, we can use train several models and train using a mixed batch of adversarial images.
• Ensemble adversarial training makes a model more robust to attacks and less useful in transferring attacks.
• Suchmodels do have a lower ceiling in terms of general performance.

Liao et al CVPR 2018
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Summary

• Deep learning is the state-of-the-art. It’s unavoidably the best choice for most classification tasks.
• It’s mysterious design. We want the machine to cra� its own features even though we won’t be able to decipher
their meaning.

• Adversarial images show the double edged sword of CNN feature generation. The incredible performance
comes with vulnerabilities.

• We are not sure how generalizable these NNs are.
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Driverless Cars

Sitawarin et al ACM CCS 2018
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