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The Modern Convolutional Neural Network

ImageNet Classification % Error (Top 5)

® Convolutional neural networks (CNNs) are the
state-of-the-art in image classification (and text
classification and image super-resolution and object
detection and...)

® In computer vision circles, seemingly every problem
has seen a significant jump in CNN usage - to good
effect.

® Much of that success has been had by researchers
willing to bypass known mathematical warnings.
This has largely played out well for CS/EE types.

® This talk is going to focus on a problem inherent to
CNNs that relates to a lack of mathematical rigor.

Introduction to Modern Convolutional Neural Networks v

25

20

| O

Non-CNN Method
CNN Method —

Human Evaluatoin

10

< . o %
90// 0/94 90/7 0/7 /))0/6‘ 0/6‘
Ry, e G %, R O
& e, U6 e .,
@(t LY



High Level Understanding of Machine Learning

® MLis afield of algorithm development wherein data is used to tune parameters/weights towards some task (like
classification). We are going to discuss supervised ML, meaning the data is labeled.

Starting Point Training Step Trained Model Testing Step

— Test Queries

A

Classification
class(A)=x

class(B)=x

class(C)=o
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Key to Machine Learning: Extracted Features

® Traditionally, features are extracted from data
samples to focus the training/testing of the machine
learning model.
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Key to Machine Learning: Extracted Features

® Traditionally, features are extracted from data
samples to focus the training/testing of the machine
learning model.

® How these features are designed and the attributes
they capture is of great interest; the more
discriminatory they are, the easier a classifier will
train and the better the algorithm will do.

Wikipedia
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Key to Machine Learning: Extracted Features

Poor Separation

® Traditionally, features are extracted from data
samples to focus the training/testing of the machine
learning model.

® How these features are designed and the attributes
they capture is of great interest; the more
discriminatory they are, the easier a classifier will
train and the better the algorithm will do.

Good Separation

Introduction to Modern Convolutional Neural Networks v 4/29



@ Introduction to Modern Convolutional Neural Networks
m Deep Neural Networks

® Deep Learning Gone Wrong

© What to Do?

O Summary

Deep Neural Networks v



Neural Networks

Input T Layer 2" Layer

® Neural Networks are nested affine transformations.

® Suppose we have a network with L = 2 layers and
an (vectorized image) input x:

Second (Output) Layer
—_———
2
o®=H( fix) )
N~

First (Hidden) Layer
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Neural Networks

® Neural Networks are nested affine transformations.

® Suppose we have a network with L = 2 layers and Input T Layer 2" Layer
an (vectorized image) input x:

a® = Woo(Wix + by) + b,

e W, and W, are the weights and by and b, are biases.

® o is activation function, one of the components that
makes the network nonlinear. In the old days, o was
typically a sigmoid to mimic neurons which is
difficult to train. The community now prefers ReLU
activations:

o(x) = xifx > 0and o(x) = 0 otherwise

® Weuse Zas:

z=o(a")
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Convolutional Neural Network

® Traditional neural networks work well
for text analysis and time series analysis,
but for high dimensional problems
(image processing) matrices make
training cumbersome/impossible.

® Modern networks typical share weights
to exploit locality. In other words, we
convolve filters across activation maps:

1
Q™ = W% Zn + by

Deep Neural Networks
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Convolutional Neural Netw

— CAR
— TRUCK
— VAN

d d — BICYCLE

FULLY

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
Y NP
FEATURE LEARNING CLASSIFICATION
Raghav Prabhu

® The output activation function is typically a softmax:

exp(9y)

K
>_k—1exp(Qk)
for a classification problem with K classes. This approximates a one-hot vector.
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® NNs require a cost function to “optimize” the weights and biases to map a sample x to a correct label y(x).
Typically...

m forimage classification, the cross-entropy function is a common choice:

K

Cee =~ D ¥(X)ilog(zk) + (1~ y(x)i)log(1 - 2£)
k=1

m forimage processing (super-resolution, denoising, etc), the mean squared error is popular:
1 PN
Cows = 5 > lly(x) = 2-(0)I[3
X

® Even with filters (and pooling) we end up with millions of parameters. How do we train these images?
Backpropagation and Stochastic Gradient Descent.
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® The tl;dr on backpropagation: we use a forward pass through the network with a training sample and then
backpropagate error through each layer using the chain rule many, many times to get the gradient.

® With these gradients, we could use a gradient descent scheme to train the network but if we have millions of
training samples, this can be prohibitively slow. Thus, we use stochastic gradient descent on batches of samples.

Loss Curve Accuracy Curve

—— Training loss
—— Validation Loss

Accuracy

i —— Training Accuracy
—— Validation Accuracy

[ EJ @ @ w 100 13 ®

[} @ © 0
Epochs Epochs

Learn OpenCV
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A Trained Neural Network

® When this works (which is more often than not) we end up with a cascade of finer and finer edge filters.

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Feature Classifier

4

Yann LeCunn
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Deep Learning & Its Features

® The strength of deep learning/neural networks is the
auto-feature-generation. Circumventing human bias
allows a direct path to a compelling solution.

Deep Neural Networks

Delving Deep into Rectifiers:

Surpassing Human-Level P

Kaiming He

Xiangyu Zhang

on ImageNet C

Shaoging Ren  Jian Sun

Microsoft Research

{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Rectified activation wnits (rectifiers) are essential for
state-of-the-art meural networks. In this work, we study
reciifier neural networks for image classification from two
aspects. First, we propose a Parametric Rectified Linear
Unit (PReLU) that generalizes the traditional rectified uni.
PReLU improves model ftting with nearly zero extra com-
putational cost and litle overfiting risk. Second, we de-
rive a robust initialization method that particularly consid-
ers the reciifier nonlinearities. This method enables us 10
train extremely deep rectified models directly from scratch
and 1o investigare decper or wider network architeciures.

and the use of smaller strides [33, 24, 2, 25]), new non-
linear activations [21, 20, 34, 19, 27, 9], and sophisti-
cated layer designs [29, 111 On the other hand, bet-
ter generalization is achieved by effective regularization
techniques [12, 26, 9, 31, aggressive data augmentation
16, 13,25, 29], and large-scale data [4, 22]

Among these advances, the rectifier neuron [21. 8, 20,
341, e.g. Rectified Lincar Unit (ReLU). is one of several
keys to the recent success of deep networks [16]. It expe-
dites convergence of the training procedure [16] and leads

[21,8,20,
like units. Despite the prevalence of rectifier networks,
recent of models [33, 24, 11, 25, 20] and

‘Based on our PReLU networks (PReLU-ners). we achieve
4.94% t0p-5 test error on the ImageNer 2012 classifica-
tion dataset. This is a 26% relative improvement over the
ILSVRC 2014 winner (GoogLeNet, 6.66% [29]). To our
knnowledge, our resulf s the firstto surpass humant-level per-
Jormance (5.1%, [22) on this visual recognition challenge.

theoretical guidelines for training them [7, 23] have rarely
focused on the properties of the rectifiers.

In this paper, we investigate neural networks from two
aspects particularly driven by the rectifiers.  First, we
propose a new generalization of ReLU, which we call

He et al CVPR 2015



What Can Go Wrong?

® While NNs offer unprecedented performance, we have to make some questionable steps.
® Among the issues:

What are these learned features looking for?

Does the stochastic gradient descent ever converge to a minimum? (non-convex, NP hard problem')
What does the cost manifold look like?

How robust are they to noise?

Do they overfit?
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What Can Go Wrong?

® While NNs offer unprecedented performance, we have to make some questionable steps.
® Among the issues:

What are these learned features looking for?

Does the stochastic gradient descent ever converge to a minimum? (non-convex, NP hard problem')
What does the cost manifold look like?

How robust are they to noise?

Do they overfit?

Deep Neural Networks v 12/29



The Rest of this Talk...

® For the rest of this talk, we are going to discuss ways in which deep learning/neural networks can fooled.

® Key context: deep learning is the state-of-the-art. It is difficult to justify using SVMs/random forests/etc. for
most problems when a neural network can significantly improve performance.

® Note as well that these other machine learning strategies can also be fooled - potentially in the exact same way.
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® Deep Learning Gone Wrong
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Setting

® Assume for the following that we have a well-trained neural network for a classification task.
® |tis easiest to illustrate the following ideas with images, but they apply for any domain.
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What Is the Network Looking At?

® We did not constrain the network to filters that we can understand.

® Research has shown that deformations of objects into gibberish can still earn high scores from a neural network.

The images below all have > 99% confidence from a well-trained model.

g

==
obelisk comic book medicine slot car wheel (cmputer hand blower dial
chest keyboard telephone

pinwheel  crossword punching bag
puzzle

paddle vacuum  accordion screwdriver photocopier strawberry tile roof sklmask
fourposter  African  seasnake hairslide nematode schoolbus  panpipe traffic light

chameleon

Nguyen et al CVPR 2015
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Pernicious Gibberish

®e000 Verizon & v % M eecco Verizon T

80% Digital Clock 51% Green Snake

Brain Coral
ARRNRRN

Nguyen et al CVPR 2015

Fooling at Network with Nonsense
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How the Gibberish Images are Made

State-of-the-art DNNs can recognize P But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects

Input
Fitness Evaluation .
Mutation

\
\

\

Evolved images \\ A

< O

Evolutionary Crossover

Algorithm
- :o\/
Label and Score

| I T Selection

Output

Deep Neural Network

Nguyen et al CVPR 2015
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How the Gibberish Images are Made
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How robust is the model to being fooled?

® What if someone wants to actively fool a network? What if we have an adversarial attack?

+.007 x

. T +
@ sen(Val0.29)  ion(V,J(6,2,1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our € of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Goodfellow et al ICLR 2014
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How Attocks Work: General |dea

Input

Model Activations

Output

Legitimate

Adversarial

Papernot et al 2016 arXiv

Adversarial Attacks

Nt thatin hgl  dimensions, all examp
we-dimensional problem by the *pocket”

decision boundaries, as illustrated in this
ts included in the blue class.

$R Training points for class 1
© Training points for class 2
98 Testing points for olass 1 88 Adversarial examples for class 1

GoodFellow et al ACM Magazine 2018
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How Attocks Work: White Box

® Suppose we have a learned model F (X) | ) for a set of parameters 6. For a white box attack, we know 6 and
the architecture of F and want to design an adversary X = X + X that fools the network with a high degree of
confidence. Since we also want the perturbation creating the adversary to be small, we look to solve

arg min ||6.X]| such that F (X + §X) = Yk £ Y
§X ~—~ ~—~
one-hot vector for class k class ¢ # k

® Because of the complexity of a neural network, solving this problem is non-trivial (highly non-linear and
non-convex [25]).
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How Attocks Work: White Box

® Jacobian-based Saliency Map Approach:

Neural Network

Neural Network
Architecture Architecture
) Cfoi X ooy, X oo
J { (22 |50 20 thervise l F
Direction Perturbation 0X 1 o [ X=X
o ‘ ation
Sensitvity Selection w Check for: yes
Estimation
F(X +0X)=4
Legitimate input 7y Adversarial Sample
classified as “1” no misclassified as “4”
by a DNN by a DNN
B(X)=1 X<X+6X F(X*)=4
Papernot et al ESSP 2016
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Block Box Attacks

® Black box attacks: the adversary doesn’t know model parameters.
® These attacks are harder to deal with than white box attacks.

Model A Adversarial Attack Function Qa(+)
Model B > Utilize Model Parameters to Get Perturbations < Adversarial Attack Function Qg (-)

Model C Adversarial Attack Function Q¢ (+)

Test Query X —> Generate Adversary Qu (X) — classa (Qa (X)) # classa (X)

/ Generate Adversary Q (X)
Query X \j classg (Q4 (X)) # classg(X)

classc(Qa (X)) # classc(X)

Adversarial Attacks



Block Box Attacks

® Suppose we can generate Y = F(X) for any X but do not have 0 or the original training data.

® Strategy 1: Iterate over synthetic data to train a new network F to mimic the output of F. With I:_, we can then
craft adversaries using F but apply them towards F .

® Strategy 2: Take an existing network trained for a similar task and use that as F in the strategy above.

Adversarial Attacks v 23/29



Block Box Attacks

® Suppose we can generate Y = F(X) for any X but do not have 0 or the original training data.

® Strategy 1: Iterate over synthetic data to train a new network F to mimic the output of F. With I:_, we can then
craft adversaries using F but apply them towards F.
Algorithm 1 Papernot et al 2017 ASIA CCS

Input F, l:_, So, A
i forn =0toN do
2 [/ Label the substitute training set.
. D={(X,F(X)): X €S}
4« [/ Train F on D to evaluate parameters 0
s 0=train(F,D)
& [/ Perform Jacobian-based data set augmentation
n Spp = {X + Asign(Je[F(X)]): X € S} U Sy
s. end for
s return 0

® Strategy 2: Take an existing network trained for a similar task and use that as F in the strategy above.
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Block Box Attacks

® Suppose we can generate Y = F(X) for any X but do not have 0 or the original training data.

® Strategy 1: Iterate over synthetic data to train a new network F to mimic the output of F. With I:_, we can then
craft adversaries using F but apply them towards F.

® Strategy 2: Take an existing network trained for a similar task and use that as Finthe strategy above.

Table 1: Error rates (in %) of adversarial examples transferred between models. We use Step-
LL with € = 16 /256 for 10,000 random test inputs. Diagonal elements represent a white-box attack.
The best attack for each target appears in bold. Similar results for MNIST models appear in Table 7.

Source Source
Target v4 v3 v3, IRv2 IRv2,, Target v4 v3 v3,, IRV2 IRV2,,
v4 60.2 392 31.1 36.6 309 v4 31.0 149 102 136 9.9
v3 438 696 364 42.1 351 v3 187 427 13.0 178 12.8
Top 1 Top 5

Papernot et al ICLR 2018
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Why Do Black Box Attacks Wo

® Akey concept of modern NN theory is transfer learning, the ability to share weights among similar tasks.

® Hypothesis: learned human interpret-able image decision manifolds are largely the same.

1: Feature
learning

Training images I Source task I Source task labels
8
Convolutional layers Fully-connected layers African elephant

C1-C2-C3-C4-C5 FC6

4096 or
6144-dim
| vector

= N .

.I Wall clock
FC8

Green snake

2: Feature
transfer

3: Classifier
learning

Transfer -
parameters -
[ .

m Background
C1-C2-C3-C4-C5 FC6 I FC7 FCa —> FCb —>
4096 or
cietdm " T
9216-dim 4096 or vector
tor  6144-d _
.
vector New adaptation

Training images ~ Sliding patches layers trained
Target task on target task Target task labels

Oquab et al CVPR 2014
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Why Do Black Box Attacks Work?

® Akey concept of modern NN theory is transfer learning, the ability to share weights among similar tasks.
® Hypothesis: learned human interpret-able image decision manifolds are largely the same.

Method mean Accuracy
HSV [27] 43.0
SIFT internal [27] 55.1
SIFT boundary [ 7] 32.0
HOG [27] 49.6
HSV+SIFTi+SIFTb+HOG(MKL) [27] 72.8
BOW(4000) [14] 65.5
SPM(4000) [ 4] 67.4
FLH(100) [14] 72.7
BiCos seg [/] 79.4
Dense HOG+Coding+Pooling[2] w/o seg 76.7
Seg+Dense HOG+Coding+Pooling[ ] 80.7
CNN-SVM w/o seg 74.7
CNNaug-SVM w/o seg 86.8
Razavian et al CVPR 2014
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Black Box Attacks Are Especially Pernicous

® Black box attacks work even when models are designed to resist white box attacks.

F(Xodv) i I '[:_(Xodv) -
FX){———— F(X)-
R X Xodv, R X Xodv ’
Trained with Smoothing Penalty Other Model

Papernot et al IEEE ESSP 2018
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Protection from White Box Attacks

® We can prevent white box attacks by training with adversarial examples on the model itself.

Figure 3: Weight visualizations of maxout networks trained on MNIST. Each row shows the filters
for a single maxout unit. Left) Naively trained model. Right) Model with adversarial training.

Goodfellow et al ICLR 2015



Protection from Black Box Attacks

® Similar to white box, we can use train several models and train using a mixed batch of adversarial images.
® Ensemble adversarial training makes a model more robust to attacks and less useful in transferring attacks.
® Such models do have a lower ceiling in terms of general performance.

X N
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Protection from Black Box Attacks

® Similar to white box, we can use train several models and train using a mixed batch of adversarial images.
® Ensemble adversarial training makes a model more robust to attacks and less useful in transferring attacks.
® Such models do have a lower ceiling in terms of general performance.

“Panda” “Dog”
(Correct) (Wrong)

Logits[l || HH_,‘_ I
=010

Original Image Adversarial Image

Liao et al CVPR 2018
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® Deep learning is the state-of-the-art. It’s unavoidably the best choice for most classification tasks.

® |t's mysterious design. We want the machine to craft its own features even though we won’t be able to decipher
their meaning.

Adversarial images show the double edged sword of CNN feature generation. The incredible performance
comes with vulnerabilities.

® We are not sure how generalizable these NNs are.
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Driverless

Cars

1. Original image

2.a Find mask to fimit
adversarial perturbation
10 sign areas (Canny edge
detection + Fill holes)

network’s input size

Logo Attacks
Original

| Bicycle Crosing [N 0.59

Blank Sign

Traffic Sign
Physically robust

adversarial example
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attack

5

Custom
Sign attack

Adversarial
Traffic Sign

X
L3

th random

Optimization Output
(low-resa

examples)

Find optimal
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Adam optimizer

- ¢«

—

Batch of randomly
transformed samples

@) Classificati
spite of being out of the dataset.

Custom Sign Attacks
Original
Priority road I O

&

Priorty rood I 099
Specd linit GO) S 0.9%
| Stop| 100

of Logo attack examples. The adversa

-

Adversarial

Adversarial

stop N 1 00

Noovertaking [N 1 00

N\ Stop I 100

stop

examples are classified with high confidence as a real traffic sign, in

Specd imi 30 N 100
o

092
091

Stop I 100

Priority oad | 096

‘Speed limit (30) IR 1 00

Stop I 1 00

(b) Classification of Custom Sign attack examples. The adversarial examples are classified with high confidence as a real traffic

sign, in spite of being custom made signs.

Sitawarin et al ACM CCS 2018
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® Appendix
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